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Toward semiclassical theory of quantum level correlations of generic chaotic systems

Daniel L. Miller*
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 19 June 1997!

In the present work we study the two-point correlation functionR(«) of the quantum mechanical spectrum
of a classically chaotic system. Recently this quantity has been computed for chaotic and for disordered
systems using periodic orbit theory and field theory. In this work we present an independent derivation, which
is based on periodic orbit theory. The main ingredient in our approach is the use of the spectralz function and
its autocorrelation functionC(«). The relation betweenR(«) and C(«) is constructed by making use of
probabilistic reasoning similar to that which has been used for the derivation of the Hardy-Littlewood conjec-
ture. We then convert the symmetry properties of the functionC(«) into relations between the so-called
diagonal and the off-diagonal parts ofR(«). Our results are valid for generic systems with broken time reversal
symmetry, and with noncommensurable periods of the periodic orbits.@S1063-651X~98!04204-4#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

Quantum chaos@1# has attracted the attention of the phy
ics community since the discovery@2# that the spectral cor
relations of classically chaotic systems are universal. T
exhibit a strong level repulsion, which induces a nontriv
two-point correlation functionR(«) of the density of states

The spectral rigidity of a generic chaotic system was co
puted for the first time by Berry@3#. He expanded the densit
of states over periodic orbits by making use of Gutzwille
trace formula@4#. He estimated a number of orbits of a give
length from the Hannay–Ozorio De Almeida sum rule@5#
and computed the so-called diagonal part of the form fac
Kdiag(t). The form factorK(t) is a function of time, and is
the Fourier transform of the two-point correlation functio
R(«).

The semiclassical theory of the form factor distinguish
between three main time scales, see diagram Fig. 1~a!. The
contribution of the short periodic orbits is shown schema
cally as a sequence ofd peaks, and the relevant time scale
the period of the shortest periodic orbittp . This nonuniver-
sal behavior of the form factor prevails betweent50 and
the ergodic timeterg @6#. Berry found thatKdiag(t)}t and
this may explain the level repulsion ifK(t)5Kdiag(t) for
t&tH .

In the present work we are primarily interested in t
semiclassical~periodic-orbit! theory of the form factor for
t*tH , wheretH is the Heisenberg time. This is the thir
time scale. It is of quantum mechanical nature, because
Heisenberg time is proportional to the mean density of sta
In Fig. 1 we have chosen units of time such thattH51. Due
to the discrete nature of the density of states, the form fa
becomes constant for times much larger thantH , see Fig.
1~a!. The semiclassical theory for the form factor fort*tH
has been analyzed recently by Bogomolny and Keating@7#.
They found the fingerprints of the short periodic orbits in t
vicinity of the Heisenberg time as shown in Fig. 1~a! by d
peaks neart5tH .

*Electronic address: fndaniil@wicc.weizmann.ac.il
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The most difficult problem addressed by Bogomolny a
Keating was the computation of the off-diagonal part of t
two-point correlation functionRoff(«). Argamanet al. @8#
pointed out that it is possible to computeRoff(«) if the two-
point statistics of the classical actions is known. Let us c
the set of actions of all primitive periodic orbits~PPOs! the
length spectrum. The density of states is related to the leng
spectrum by the Gutzwiller trace formula@4#. Therefore cor-
relations of eigenenergies should be related to correlation
actions.

Our approach to the semiclassical evaluation ofRoff(«)
further develops the approach of Argamanet al. @8# and their
followers @9,10# but makes use of a different starting poin
The first new element is the study of the spectral zeta fu

FIG. 1. Form factors derived from correlation functions of de
sity of states and spectral determinant. Diagrams~a! and ~c! corre-
spond to a small chaotic system, where one can observe fingerp
of short periodic orbits in the form factors, shown asd-functional
peaks. Diagrams~b! and~d! correspond to diffusive systems, whic
can be considered as huge complex chaotic systems. One ca
serve smoothing of the form factors neart50 and t5tH . The
particular shape of this smoothing contains system specific infor
tion like dimensionality and characteristics of disorder.
4063 © 1998 The American Physical Society
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4064 57DANIEL L. MILLER
tion z(E), its autocorrelation functionC(«), and its Fourier
transformKz(t).

The spectral zeta functionz(E) is an important tool for an
analytic or numeric computation of the energy levels of a
quantum mechanical system. The zeros of this function
the eigenenergies of the Hamiltonian. A unique definition
z(E) is to be given later. Voros@11# has proposed to com
pute this function by making use of a product over the pe
odic orbits. Berry and Keating@12# have expanded this prod
uct over the composite periodic orbits~CPOs!, see precise
formula below. The spectralz function is a smooth function
that has nod peaks like the density of states does. Theref
it is a good idea to characterize level statistics of chao
systems by thez(E) autocorrelation function. This was don
by Kettemann, Klakow, and Smilansky, who also compu
this autocorrelation functionC(«) for two- and three-
dimensional Sinai billiards@13#.

The diagram Fig. 1~c! schematically showsKz(t). For
systems with broken time reversal symmetry, as in Fig
one can see the separation of the time scales very cle
The short time behavior ofKz(t) is determined by the shor
CPOs, and it is represented byd peaks. They become dens
giving a constant behavior ofKz(t) for t.terg; see Ref.
@13#. It is known that the spectralz function has to satisfy a
functional equation@14#. This equation can be derived from
the definition of z(E) and implies an exact mirror sym
metry of Kz(t) around the half Heisenberg time
Kz(tH/21t)5Kz(tH/22t). For this reason one has to ob
serve the fingerprints of the short composite periodic or
near tH ; they are shown asd peaks neartH in Fig. 1~c!.
Therefore, if the short time behavior ofKz(t) is known, then
the behavior ofKz(t) neartH is also known.

Similar to the case ofR(«), the periodic orbit expansion
of z(E) allows one to separateC(«) andKz(t) into diagonal
and off-diagonal parts. Following Berry@3#, we can assume
that the off-diagonal part ofKz(t) vanishes fort,tH/2.
This assumption together with the mirror symmetry ofKz(t)
implies an explicit connection between the diagonal and
off-diagonal parts ofKz(t). Physically, this relation has to
be interpreted as aquantum-classical time scale separatio.

Sincez(E) is expressed in terms of CPOs by the Ber
Keating formula@12#, the autocorrelation functionC(«) is
related to correlations in thecomposite length spectrum,
which is the set of all CPOs. In this way we introduce
analog of length correlations, which were used by Argam
et al. @8# to discuss the two-point spectral functions. One
the central ideas of the present work is to compute the
relations in the composite length spectrum by making use
the mirror symmetry ofKz(t). Moreover, the time scale
separation provides an explicit dependence ofKz(t) on tH .
The two-point correlation function of composite actions
just the Fourier transform ofKz(t) with respect to 1/\ hid-
den intH . This idea is similar to one that has been sugges
by Balian and Bloch@15#.

The length or the action of the given composite perio
orbit is simply the algebraic sum of the lengths or the actio
of the PPOs forming this composite orbit. For this reas
action correlations of CPOs have to be related to action
relations of PPOs. In the present work we construct an in
gral relation between these correlation functions by mak
use of simple probabilistic arguments. This relation is g
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neric and independent of the dimensionality of the syste
however, it might be dependent on the symmetry of the s
tem. We perform calculations only for systems that do n
have spatial symmetries, because we assume that the
posite length spectrum is nondegenerate.

The statistical relation between correlations of CPOs a
correlations of PPOs can be converted by the inverse Fou
transform and a special regularization procedure to a rela
between the off-diagonal parts ofK(t) andKz(t). Calcula-
tions show that the behavior ofK(t) near tH , which is
shown schematically in Fig. 1~a!, reproduces the behavior o
Kz(t) neartH ; see Fig. 1~c!.

The ideas of this paper are best understood by the foll
ing logical flow:

~1! The off-diagonal part ofK(t) is the Fourier transform
with respect to 1/\ of the two-point statistics of actions o
PPOs.

~2! The two-point statistics of actions of PPOs can
computed from the two-point statistics of actions of CPO

~3! The two-point statistics of actions of CPOs is dete
mined by the off-diagonal part ofKz(t).

~4! The diagonal and off-diagonal parts ofKz(t) are con-
nected, becausez(E) satisfies the functional equation.

~5! For the systems with broken time reversal symme
there is a clear separation between the classical scale~time of
mixing! and the quantum mechanical scale~time of quantum
recurrence!. In this case we can compute the off-diagon
part of Kz(t) explicitly, if the diagonal part is known.

~6! The diagonal parts of eitherK(t) andKz(t) or R(«)
andC(«) have well known periodic orbit expansions, whic
can be evaluated both numerically and by making use of s
rules @3,13#.

The integral relation connecting the correlations of t
PPOs and the CPOs can be applied directly to derive the
known correlations between prime numbers. As we show
Appendix B, the Hardy-Littlewood expression@16# can be
reproduced in this framework. We emphasize this appli
tion as a very stringent test for our probabilistic method.

Large chaotic systems, for example, billiards with a lar
number of scatterers or disordered systems, usually h
terg@tp , since terg is the time of a diffusion through the
system. The system specific features ofK(t) andKz(t) are
smooth; see Figs. 1~b! and 1~d!. The conditionterg@tp al-
lows us to express the diagonal part ofC(«) as the Fredholm
determinant of the diffusion propagator. In this way our e
pressions forR(«) reproduce precisely the field theory resu
of Andreev and Altshuler@17#.

At this point it is appropriate to review the importan
work on the level statistics of disordered systems that ha
very important impact on the development of the semicl
sical theories presented here and elsewhere@7,10#. Field
theory was used by Efetov to compute the level statistics
small metallic samples, see the review paper@18#. He con-
sidered the electron moving in a random potential of imp
rities and confined by sample boundaries. He assumed
the fluctuations of the fields are uniform across the sam
and obtained universal results for the level statistics.

Altshuler and Shklovskii@19# made use of perturbation
theory and expressed the so-called perturbative part ofR(«)
in terms of the density-density correlation function, which
the propagator of the diffusion equation. Argamanet al. @20#
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showed that the perturbative part ofR(«) is nothing but the
diagonal part ofR(«) mentioned before.

The diagonal~or perturbative! part of R(«) is singular at
small energies; the only way to remove this singularity is
compute the off-diagonal~or nonperturbative! part of R(«).
Andreev and Altshuler@17# computed this term by making
use of nonperturbative field theory and obtained the ans
in terms of the same density-density correlation functi
These authors repeated Efetov’s calculations, but allowed
spatial fluctuations of the superfields.

The free energy functional in Efetov’s theory describ
the diffusion modes. These modes have to satisfy the di
sion equation. This theory was remarkably generalized
Muzykantskii and Khmelnitskii@21#. They obtained the free
energy functional describing the eigenmodes of the kin
equation@22#.

Muzykantskii and Khmelnitskii also suggested that t
modes of the kinetic equation should be replaced by
modes of the Liouvillian operator if one goes from diffusiv
to chaotic systems. Agamet al. @23# and Andreevet al. @24#
constructed field theory for chaotic systems by averag
over the energy and obtained the Liouvillian operator in
kinetic part of the free energy functional. Both types of fie
theory show that the spectral statistics of a chaotic syste
described by the determinant of the Liouvillian operator.

The connection between the diagonal part of the corr
tion function and the determinant of the Liouvillian operat
is almost trivial in the framework of periodic orbit theory
This connection is different from the field theory predictio
due to the terms containing repetitions of the PPOs. T
periodic orbit theory expression for the off-diagonal part
the correlation function obtained by Bogomolny and Keat
@7# is also different from the field theory result@24#. There-
fore, the derivation of the Andreev-Altshuler result in term
of the action correlations is interesting, and it also gives
ditional information about the autocorrelation function of t
spectral determinant. The latter has been obtained by u
random matrix theory@25,26# and random polynomial theor
@27#, as opposed to field theory.

All correlation functions employed in the present wo
are defined in Secs. II and III. In Sec. IV very simple prob
bilistic arguments will help us to build the integral equati
connecting the correlations of CPOs with the correlations
PPOs. The behavior of form factors near the Heisenberg t
is considered in Sec. V. In the same section our results
compared with the universal random matrix theory pred
tions and the results of Refs.@17,7#. We discuss the physic
of the action correlations in Sec. VI. We also summarize
results in Sec. VI.

II. DEFINITIONS OF OBJECTS RELATED
TO THE SPECTRAL CORRELATIONS

We start to build our theory for the specific example
the chaotic billiard. Let us also put the Aharonov-Bohm fl
through the billiard in order to break the time reversal sy
metry. Let us also assume that the system has no sp
symmetries. The classical motion of a charged particle in
billiard is finite and therefore one can associate two sets w
this system. The first set,$ l p%, is formed by the lengths of al
the PPOs@28#, and each orbit is labeled by the indexp. Each
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orbit makesmp windings around the Aharonov-Bohm flux
We distinguish the orbits with positive and negative windi
numbers, i.e., the paths going clockwise and counterclo
wise around the flux tube. Therefore, the length spectr
$ l p% is degenerate, the lengths of the orbits with nonz
winding numbers appear twice.

The second set associated with the billiard is the quan
mechanical spectrum. It is formed by the wave vector m
nitudes$kn%. Each of them corresponds to the eigenvalue
the HamiltonianEn5E(kn) and E(k)5\2k2/(2m), where
m is the mass of a particle.

The density of states is a sequence ofd peaks, and it is
usually computed by making use of the Green function of
system:

d~k![ (
n51

`

d~k2kn!52
1

p
Im Tr Ĝr~k!E8~k!. ~1a!

HereĜr(k) is the retarded Green function of the system, a
the prime means derivative with respect tok. The trace of
Ĝr(k) can be represented as a sum over the periodic or
Such an expansion is called a trace formula@4#. The deriva-
tion of this expansion for a billiard can be found in the r
view Ref. @28#. The result is

TrĜr~k!E8~k!52(
p

(
r 51

`
i l peikrl p2 inpp/21 ifmp

elprl p/22e2lprl p/2
2 ipd̄~k!,

~1b!

where the indexp runs over the PPOs, the length of ea
orbit is l p , the Lyapunov exponent of each orbit islpl p , and
the Maslov index isnp . We also broke the time reversa
symmetry by adding the phase due to Aharonov-Bohm fl
f multiplied by the winding number of the trajectorymp .
The Lyapunov exponents in Eq.~1b! are defined per unit
length of a trajectory and not per number of scatterings a
Ref. @28#.

By definition the trace of the Green function in the le
hand side of Eq.~1b! is the sum over all states, and this su
diverges logarithmically in two dimensions. Therefore E
~1b! implicitly contains the ultraviolet cutoff. This cutoff is
not specified explicitly in the right hand side of Eq.~1b! and
therefore it is hidden in the convergence properties of
sum over periodic orbits. There are different ways to co
pute this sum; all of them depend explicitly onk, and there-
fore on the ultraviolet cutoff. We will ignore this cutoff
because we are dealing with various statistics of energy
els and periodic orbits that are independent of this cutoff

The formula Eq.~1b! also contains the smooth part of th
density of statesd̄(k), which is proportional to the volume o
the system. Equations~1a! and~1b! show that the density o
states contains an oscillating part. It is defined as

dosc~k![d~k!2d̄~k!, ~1c!

and is proportional to the imaginary part of the first term
the right hand side of Eq.~1b!.
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4066 57DANIEL L. MILLER
The correlation function of the quantum mechanical sp
trum and its Fourier transform have to be defined in a spe
way, because of thed-functional form of the density of state
and the discrete form of the expansion Eq.~1b!. We define
the correlation function by making use of the averaging o
k with Gaussian weight

R~«,k![e2D l 2«2/2E
2`

` dq

A2pDk
e2~q2k!2/2Dk2

3doscS q1
«

2DdoscS q2
«

2D ~2!

and this definition of the correlation function is valid fo
«!k. We emphasize that« in our definition is the difference
of the wave numbers and not of the energies as accepte

The definition of the correlation function Eq.~2! contains
the product of twod functions from two densities of state
and only one averaging. Practically, thed function remaining
after the integration in Eq.~2! has to be replaced by
smoothed function of the width smaller than the mean le
spacing. Then, the definition Eq.~2! can be understood geo
metrically. The two-point correlation function is proportion
to the difference between the number of the level pa
(kn ,kn8) inside the region, which we showed schematica
as an ellipse in Fig. 2, and the square of the mean densi
states multiplied by the area of this region. The ‘‘length’’
the ellipse is of the order ofDk and the ‘‘width’’ has to be
smaller than the mean level spacing.

We show three ellipses demonstrating the correlat
function computed fork equal tok(a), k(b), k(c), and«!Dk.
It is important to note thatDk has to be smaller than th
characteristic scale of variation ofR(«,k) as a function ofk.
We will see later that this scale is;«d̄8(k), where the prime

FIG. 2. Schematic diagram demonstrating how to compute
correlation function of energy levels. Each point represents a pa
the energy levels (kn ,kn8). The correlation functionR(«,k) picks
up the points inside one of the ellipses shown in the diagram. Th
ellipses near the diagonal are drawn fork equal tok(a), k(b), k(c),
and«!Dk. We draw the fourth ellipse for the case«;Dk and the
choice of relevantk becomes ambiguous.
-
al

r

.

l

s

of

n

means derivative with respect tok. Therefore, the choice o
the averaging interval length is limited by the inequal
«d̄8(k)Dk&1.

The fourth ellipse in the diagram Fig. 2 is drawn in th
area where«;Dk. It is difficult to decide whether the value
of k in this case isk(a), or k(b), or maybek(c). In order to
make the correlation function well defined for all« we mul-
tiplied it by a Gaussian prefactore2D l 2«2/2; see Eq.~2! where
D lDk*1.

The domain of«, where the correlation function is mean
ingful, is limited now by two competing conditions:«D l &1
and«&1/(Dkd̄8). The latter inequality has to be implied b
the former one, and therefore we obtain the important c
dition

Dk

D l
&

1

d̄8~k!
. ~3!

The averaging has to be performed over a large numbe
the energy levels. This number is

DN;Dkd̄~k!@1. ~4!

The inequalities Eqs.~3! and~4! are not very restrictive and
most of the published experimental and numerical wo
where the correlation function was computed, employed
averaging intervals of the width satisfying them.

Similar statistics can be defined for the length of the PP
entering the right hand side of Eq.~1b!. The length spectrum
of the system has the density(pd(x2 l p), and the weighted
mean densityd̃PPO(x) is the sum overn,n,m of

e
of

e

FIG. 3. Schematic diagram demonstrating how to compute
correlation function of the length spectrum. Each point represe
the pair of the primitive periodic orbits lengths (l p ,l p8). The corre-

lation functionR̃(x,y) picks up the points inside one of the ellipse
shown in the diagram. The three ellipses near the diagonal w
drawn forx equal tox(a), x(b), x(c), andy!D l . The fourth ellipse
was drawn for the casey;D l and the choice of relevantx becomes
ambiguous.
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d̄PPO~x,n,n,m!5(
p

e2lpl pdnnp
dnnp

dmmp

e2~x2 l p!2/2D l 2

A2pD l

[d̄PPO~X! X5~x,n,n,m!, ~5!

where we have set the averaging interval to be preciselyD l ,
because we are going to build analytical relations betw
the statistics of energy levels and the statistics of perio
ea
y

p

bi
rs
th
ul

y-

n

n
ic

orbits. The mean density in Eq.~5! picks up the orbitsp with
the defined value of the number of the wall reflectionsnp .
We keep this number in Eq.~5!, because the action correla
tions were found between the orbits with the samenp , see
Ref. @10#.

The correlation function of the length spectrum is defin
in a slightly different way from the correlation function o
the density of states:
R̃2~x,n,n,m;x8,n,n8,m8!5(
p

e2lpl p/2dnnp
dnnp

dmmpH(
p8

e2
lp8l p8

2 dnnp
dn8np8

dm8mp8

3
e2~x2 l p!2/2D l 2

A2pD l

e2~x82 l p8!2/2D l 2

A2pD l
2 (

p8Þp

e2lp8l p8/2dn8np8
dn8np8

dm8mp8
d~x2x82 l p1 l p8!

3
e2~1/2D l 2![ ~x1x8!/22~ l p1 l p8!/2]2

A2pD l
J e2Dk2~x2x8!2/2

[R̃2~X;X8!, ~6a!
f the
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r of
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the
where the first term in the brackets is the product of the m
densities of PPOs and the second term is the probabilit
finding two PPOs having the length differencey. Both terms
are weighted by stability factors that compensate the ex
nential proliferation of the PPOs.

The key assumption of the present theory is that the or
with different Maslov indexes or different winding numbe
or different number of scatterings do not contribute to
correlation function of the length spectrum, which we sho
define as

R̃~x,y!5 (
n,n,m

R̃2S x1
y

2
,n,n,m;x2

y

2
,n,n,m D . ~6b!

Therefore we assume thatR̃2(X;X8) decay very fast with
un2n8u, un2n8u, and um2m8u. The correlation function
R̃2(X;X8) is meaningful forux2x8u&D l and this is taken
into account by the factore2Dk2(x2x8)2/2 in Eq. ~6a!, since
1/Dk&D l as we will show later.

The correlation function defined by Eq.~6b! has a normal-
ization condition that is an extremely useful tool for verif
ing results. We have from Eqs.~6!

(
n8n8m8

E dx8R̃2~X;X8!5d̄PPO~X!, ~7a!

E dyR̃~x,y!5 d̃PPO~x!, ~7b!

which are valid under the conditionD l !x. In order to derive
this relation we have replaced(p(p8Þp in Eq. ~6a! by two
terms(pp82(pdpp8. The second term gives the mean de
n
of

o-

ts

e
d

-

sity on the right hand side of Eqs.~7!. The first term is a
product of the mean densities and cancels another term o
type (pp8 in Eq. ~6a!.

The correlation functions defined by Eqs.~6! have the
graphical representation in Fig. 3 quite similar to that in F
2. In the case of Fig. 3 we are interested in the numbe
PPO pairs whose mean length is nearx and difference of
lengths is neary. The correlation function counts the numb
of PPO pairs inside one of the ellipses shown in Fig. 3. T
‘‘length’’ of the ellipses is determined by the width of th
Gaussians in Eq.~6a! and is;D l . The ‘‘width’’ of the el-
lipses does not appear explicitly in Eq.~6a!, meaning that
d(y2 l p1 l p8) has to be smoothed to the order of 1/d̃PPO(x).

The length of the averaging interval,D l , has to be as large
as possible, but smaller than the characteristic scale of
variation of R̃(x,y) as a function ofx for constanty. This
scale can be estimated from the results of Ref.@8# and it is
d̄8(k)/y taken fork5kx , wherekx is the inverse density o
states:

x52pd̄~kx!, ~8!

which is a classical quantity. The choice of the averag
interval is, therefore, limited by the inequalityD l &d̄8(k)/y.
This inequality has to be fulfilled in the interval ofy, where
the correlation function Eq.~6! is meaningful, i.e., for
0,y&1/Dk. Therefore, the choice of the averaging windo
width is limited by the condition analogous to Eq.~4!

D l

Dk
&d̄8~kx!. ~9!

This inequality holds regardless of Eq.~4! because one can
study the statistics of energy levels independently from
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4068 57DANIEL L. MILLER
statistics of periodic orbits. From this point of view the i
equality Eq.~9! is not very restrictive either.

The statistical properties of the PPOs length spectrum
ultimately connected with the statistical properties of t
quantum mechanical spectrum@8#. We obtain from Eqs.~1!
the periodic orbit expansion of the spectral correlations fo
factor

K~x,k![E
2`

` d«

2p
e2 i«xR~«,k!5Kdiag~x!1Koff~x,k!,

~10a!

Kdiag~x!5
1

4p2(
pr

l p
2

Uelprl p

2 1e2
lprl p

2 U2
e2~1/2D l 2!~ uxu2 l pr !2

A2pD l
,

~10b!

Koff~x,k!5(
p

(
p8Þp

l pl p8e
2~lpl p1lp8l p8!/2

4p2

3
e2~1/2D l 2![ uxu2~ l p1 l p8!/2] 2

A2pD l

3eik~ l p2 l p8!2Dk2~ l p2 l p8!2/2

3ei ~np2np8!p/21 if~mp2mp8! ~10c!

52
1

4p2 x2E
2`

`

dyeikyR̃~ uxu,y!, ~10d!

which is valid fork@Dk. Under this condition we have ne
glected the Fourier transform of the first term in the brack
on the right-hand side of Eq.~6a!, because it contains th
factor e2k2/(2Dk2).

Equation~10c! is justified forx such that

luxu@1, ~11!

where l is the mean Lyapunov exponent defined per u
length of the trajectory. This condition allows us to expa
the denominators in Eq.~1b! and to neglect the summatio
over the repetition indexr . We also assumed that the ma
netic flux f is so large thatfDm@1, whereDm is the
characteristic scale ofm2m8 dependence ofR̃2(X;X8).

The key question of the theory is how to perform t
summation over the periodic orbits if the length spectrum
unknown. This question was resolved@3# with the help of the
sum rule@5#, valid for ergodic systems. One can deduce
density of PPOs from this sum rule:

d̃PPO~x!;
1

x
. ~12!

This expression is valid asymptotically forx larger than the
ergodic length (terg times velocity! and it givesKdiag(x)}x.

The definition of the form factor, Eqs.~10!, is not com-
plete, because we did not specify yet how to choose the s
of the averaging windowsDk andD l . Common wisdom was
that Eqs.~10! would survive if they do not break the cond
tions
re

s

it

s

e

es

D lelx/x@1, Dkd̄~k!@1. ~13!

We want to define the form factor in such a way that it w
carry information about the correlations of energy levels a
about the correlations of periodic orbits. Therefore, we
quire Dk andD l to satisfy Eqs.~4! and ~9!, i.e.,

d̄8~k!&
D l

Dk
&d̄8~kx!. ~14!

Near the Heisenberg lengthx;2pd̄(k), we havekx5k and
two inequalities in Eq.~14! give usD l /Dk;d̄8(k).

III. DEFINITIONS OF OBJECTS RELATED
TO THE SPECTRAL z FUNCTION

One can construct an infinitely large number of comp
analytic functions ofk having zeros only atk5kn . Each
such function can be considered as a spectral determin
We are going to define the spectral determinant in terms
the retarded Green functionĜr(k)

z~k![e*0
kdq$TrĜr ~q!E8~q!1 ipd̄~q!%. ~15!

This definition implies the functional equation for the spe
tral z function

z~k!5e2p i *0
kdqd̄~q!z* ~k!, ~16!

where the asterisk stands for the complex conjugation.
expression in brackets in Eq.~15! can be written as the serie
expansion over the periodic orbits Eq.~1b!. The exponential
function of this series was computed by Voros@11# and the
result is

z~k!5)
p

)
r 50

`

~12ei ~klp2npp/21fmp!e2~r 11/2!lpl p!.

~17!

This expression is taken from Eq.~6.21! of Ref. @28#, andlp
here is the Lyapunov exponent per unit length. Here
added the phase due to the Aharonov-Bohm flux.

The autocorrelation function of the spectralz is defined
similarly to the correlation function of the density of state

C~«,k![e2D l 2«2/2E
2`

` dq

A2pDk
e2~q2k!2/2Dk2

3zS q1
«

2D z* S q2
«

2D . ~18!

Equation~16! is also valid for the correlation function

C~«,k!5e2p i d̄~k!«C~2«,k!, ~19!

where we expanded the integral in the exponent in Eq.~16!
under the condition«!k, and also used the inequality Eq
~4!.

As usual, we put the prefactor in Eq.~18!, which will be
translated into the averaging over the lengths of the CP
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The CPOs appear from the evaluation of the product in
~17! and we define them as all possible sets of the PP
taken without repetitions:

c5$p% and l c[ (
pPc

l p . ~20!

The CPOs have the composite Lyapunov expone
lc[(1/l c)(pPclpl p , the composite Maslov indexe
nc[(pPcnp , the composite number of wall reflection
nc[(pPcnp , the number of the primitive componen
mc[(pPc1, and the composite winding numbe
mc[(pPcmp . This definition of the CPOs leads to the hig
degeneracy of the composite length spectrum$ l c%.

The composite length spectrum has the den
(cd(x2 l c) and the weighted mean densityd̃CPO(x) is the
sum overn,n,m of

d̄CPO~x,n,n,m!5(
c

e2lcl cdnnp
dnnp

dmmp

e2~x2 l c!2/2D l 2

A2pD l

[d̄CPO~X!. ~21!

The correlation function of the composite length spectrum
defined similarly to Eq.~6!

C̃2~x,n,n,m;x8,n8,n8,m8!

5(
c

e2lcl c/2dnnc
dnnc

dmmc

3H (
c8

e2lc8l c8/2dnnc
dn8nc8

dm8mc8

3
e2~x2 l c!2/2D l 2

A2pD l

e2~x82 l c8!2/2D l 2

A2pD l

2 (
c8Þc

e2lc8l c8/2dn8nc8
dn8nc8

dm8mc8
d~x2x82lc1lc8!

3
e2~1/2D l 2!@~x1x8!/22~ l c1 l c8!/2#2

A2pD l J e2Dk2~x2x8!2/2

[C̃2~X;X8!, ~22!

C̃~x,y!5 (
n,n,m

C̃2S x1
y

2
,n,n,m;x2

y

2
,n,n,m D . ~23!

We will assume in what follows thatC̃2(X;X8) falls off
rapidly with un2n8u, un2n8u, andum2m8u. The correlation
function C̃(x,y) is meaningful only fory&D l , and this is
taken into account by the Gaussian prefactor. The norma
tion of the correlation function can be deduced from E
~21! and ~22!,

(
n8n8m8

E
0

`

dx8C̃2~X;X8!5d̄CPO~X!, ~24a!
q.
s

ts

y

s

a-
.

E
2`

`

dyC̃~x,y!5 d̃CPO~x!, ~24b!

and it is valid under the conditionD l !x. The derivation is
similar to the derivation of Eq.~7!.

The statistical properties of the CPOs length spectrum
connected with the statistical properties of the spectral z
function. We can see that by expanding the Fourier tra
form of the correlation function Eq.~18! over the CPOs,

Kz~x,k![E
2`

` d«

2p
e2 i«xC~«,k!5Kdiag

z ~x!1Koff
z ~x,k!,

~25a!

Kdiag
z ~x!5(

c
(

r p ,pPc H )
pPc

e2lpl pr p
2

)
j 51

r p

~12e2lpl pj !2J
3

1

A2pD l 2
e2~x2(pPc l pr p!2/~2D l 2! ~25b!

' d̃CPO~x!, ~25c!

Koff
z ~x,k!'(

c
(

c8Þc

e2~lcl c1lc8l c8!/2
e2~1/2D l 2![ uxu2~ l c1 l c8!/2]2

A2pD l 2

3eik~ l c2 l c8!2Dk2~ l c2 l c8!2/2eip~mc2mc8!

3ei ~nc2nc8!p/2eif~mc2mc8! ~25d!

52E
2`

`

dyeikyC̃~x,y!, ~25e!

where the repetition indexesr p in Eq. ~25b! run from 1 to`.
Equations~25c!, ~25d!, and~25e! are valid under the condi
tion Eq. ~11!. This condition allows us to keep only the fac
tors with r 50 in Eq.~17!, and therefore our definition of the
CPOs Eq.~20! does not contain the repetitions of the PPO
We also assumed that the magnetic fluxf is so large that
fDm@1, whereDm is the characteristic scale of them2m8

dependence ofC̃2(X;X8). Equation~25a! defines the form
factor of the autocorrelation function of the spectral zeta. I
zero for negativex, whereasK(x) depends onuxu.

The averaged density of the CPOs length spectrum
computed@29# for a family of strongly chaotic systems an
its asymptotic form in the general case is

d̃CPO~x!;g, ~26!

where g is the normalization constant, andg21 is of the
order of the billiard size. This density is sufficient for th
computation of the diagonal part of the form factor Eq.~25c!
but the nondiagonal part can be computed only if the co
lations in the CPOs are known.
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IV. PROBABILISTIC THEORY OF THE LENGTH
SPECTRUM CORRELATIONS

The length spectrum of PPOs is a part of the length sp
trum of the CPOs. Therefore we can ask what is the pr
ability of finding a PPO in some interval of the compos
length spectrum. LetP be the set of all PPOs and letC be the
set of all CPOs. ThenP,C. It may happen thatcPC con-
sists of only one PPO and thereforecPP. We define the
probability of this event:

P~c![^cPP& l c
5

d̄PPO~Xc!

d̄CPO~Xc!
. ~27!

It is a function ofXc whereXc5( l c ,nc ,nc ,mc). The prob-
ability P(c) counts CPOs, which are actually PPOs, hav
defined values ofnc , nc , mc and lengths that lie in the sma
interval nearl c . In Eq. ~27! we regard the statementcPP as
a Boolean function, which is equal to one ifcPP and equal
to zero if c¹P.

We can also count the number of pairs of the CP
c,c8PC with the fixed length differencel c2 l c8, such that
both of them are actually PPOs,c,c8PP. The probability of
finding such a pair is defined as

P~c,c8![^cPPùc8PP&~ l c1 l c8!/25P~c!P~c8!

2e2~lcl c1lc8l c8!/2
R̃2~Xc ;Xc8!

d̄CPO~Xc!d̄CPO~Xc8!
. ~28!

This equation defines the averaging over (l c1 l c8)/2. The
fluctuations of the Lyapunov exponent are ignored here
two reasons: First, it was found numerically@10# that the
fluctuations of the stability amplitudes do not affect the c
relation function; second, our result Eq.~42! is independen
of these fluctuations, becauseP(c) is a smooth function o
Xc .

The probability that CPOc contains another CPOc8 can
be defined by averaging over the length ofc:

P~c8Pc![^c8Pc& l c
5e2lc8l c8

d̄CPO~Xc2Xc8!

d̄CPO~Xc!
. ~29!

This probability is related to the probabilityP(c) in Eq. ~27!
since

cPP⇔ ù
pPP,l p, l c*

p¹c, ~30!

where l c* is an arbitrary length such thatl c/2> l c* , l c . Av-
eraging overl c gives

P~c!5 )
p,l p, l c*

@12P~pPc!#

1(
c8

~21!mc8F P~c8Pc!

2 )
pPc8

P~pPc!G , ~31!
c-
-

g

,

r

-

where the composite orbitsc8 are such thatl c8> l c* and
;pPc8l p, l c* . We assume here thatP(c8Pc)5)pPc8P(p
Pc) unless l c8 is larger thanl c* . One can choosel c* by
minimizing the absolute value of the second term on
right hand side of Eq.~31!.

The main purpose of this section is to construct an eq
tion analogous to Eq.~31! for the joint probabilityP(c,c8).
Equation~30! for a pair of CPOs reads

cPPùc8PP⇔ ù
pPP,l p, l c*

p¹cùp¹c8. ~32!

This statement can be converted to a Boolean expression
averaged over (l c1 l c8)/2. That is,

P~c,c8!

5K )
p,l p, l c*

@12pPc2pPc81pPcùpPc8#L
~ l c1 l c8)/2

.

~33!

Let CPOc9 consist only of the PPOs that are shorter th
l c* . We can introduce the sum over such orbits into Eq.~33!:

P~c,c8!5K (
c9

)
p¹c9,l p, l c*

@12pPc2pPc8#

3 )
pPc9

@pPcùpPc8#

1 )
l p, l c*

@12pPc2pPc8#L ~34!

'(
c9

)
p¹c9,l p, l c*

@12P~pPc!2P~pPc8!#

3P~c9Pcùc9Pc8!

1 )
l p, l c*

@12P~pPc!2P~pPc8!#, ~35!

where the probability of having a ‘‘common divisor’’ is
given by

P~c9Pcùc9Pc8![^c9Pcùc9Pc8&~ l c1 l c8!/2 . ~36!

We assumed that forpÞp8

^pPcùp8Pc8&~ l c1 l c8!/2'^pPc& l c
^p8Pc8& l c8

~37!

and also we made the same assumptions as in the deriv
of Eq. ~31!. Particularly we neglected correction terms in E
~35!, which are sums overc9,l c9> l c* . Such correction terms
were important in Eq.~31!, but they can be neglected in Eq
~35! because the greatest contribution to the correlation
PPOs is given by the short CPOsc9.

It is convenient to rewrite Eq.~35! as a relation between
the correlation function of PPOs and CPOs having a ‘‘co
mon divisor’’
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P~c!P~c8!2P~c,c8!

'(
c9

H @P~c9Pc!P~c9Pc8!2P~c9Pcùc9Pc8!#

3 )
p¹c9,l p, l c*

@12P~pPc!2P~pPc8!#J . ~38!

It is essential for the derivation of Eq.~38! that the compos-
ite orbit c9 does not contain repetitions of the primitive o
bits. This agrees with our definition of composite orbits E
~20!. In general one can allow repetition of the primitiv
orbits in the definition of the composite orbit. In this case E
~38! is also correct, but the sum must be taken over
composite orbits, which does not contain repetitions of
primitive orbits.

The derivation of Eq.~38! contains a number of approx
mations. Therefore, one would like to verify that this equ
tion preserves the normalization of the correlation functio
This verification appears in Appendix A.

In certain cases, any given composite orbit contain
small number of PPOs and therefore we can make a fur
approximation in Eq.~38!

)
p¹c9,l p, l c*

@12P~pPc!2P~pPc8!#

' )
l p, l c*

@12P~pPc!#@12P~pPc8!#. ~39!

The condition of a small number of ‘‘divisors’’

P~pPc!}e2lpl p!1

is not enough to justify making this approximation. It mig
happen that the error becomes larger when the sum ovec9
in Eq. ~38! is computed. One can check that this error is
the same order as the contribution of the repetitions of PP
which has been neglected.

From Eqs.~38! and ~39! by making use of Eq.~31! we
obtain

P~c!P~c8!2P~c,c8!'P~c!P~c8!(
c9

@P~c9Pc!P~c9Pc8!

2P~c9Pcùc9Pc8!#. ~40!

The right hand side of Eq.~38! or Eq. ~40! contains the
nontrivial probability of finding a ‘‘common divisor’’P(c9
Pcùc9Pc8). It is difficult to find a ‘‘common divisor’’ if
the lengths ofc and c8 are close to each other. We ca
compute this probability by noting that in order to find
‘‘common divisor’’ of length l c9 one has to find two CPO
ciii andciv of lengthl ciii5 l c2 l c9 andl civ5 l c82 l c9. The same
is true for other components ofXc characterizing each CPO
The probability of finding a pair of composite orbits of sp
cific lengths is given by the two-point correlation function
the composite length spectrum. Therefore, we substitute
.

.
e
e

-
.

a
er

f
s,

P~c9Pcùc9Pc8!

5P~c9Pc!P~c9Pc8!2e2~lcl c1lc8l c8!/22lc9l c9

3
C̃2~Xc2Xc9,Xc82Xc9!

d̄CPO~Xc!d̄CPO~Xc8!
. ~41!

into Eq. ~40! and arrive at

R̃2~Xc ,Xc8!'P~c!P~c8!

3(
c9

e2lc9l c9C̃2~Xc2Xc9,Xc82Xc9!.

~42!

In the more complicated cases, when the approximation
~39! fails, we should substitute Eq.~41! into Eq. ~38!:

R̃2~Xc ,Xc8!'P~c!P~c8!

3H )
p,l p, l c*

12P~pPc!2P~pPc8!

@12P~pPc!#@12P~pPc8!#J
3(

c9

e2lc9l c9C̃2~Xc2Xc9,Xc82Xc9!

)
pPc9

@12P~pPc!2P~pPc8!#

, ~43!

where the product in the brackets is assumed to be con
gent to some smooth function of bothXc and Xc8 but inde-
pendent of thel c* .

The substitution of Eq.~27! into Eq. ~42! gives

R̃2~X,X8!5
d̄PPO~X!d̄PPO~X8!

d̄CPO~X!d̄CPO~X8!
E

0

`

dx9

3 (
n9n9m9

d̄CPO~X9!C̃2~X2X9,X82X9!,

~44!

where the summation in Eq.~42! is replaced by the integra
tion.

Assuming that the product of the mean densities in E
~44! varies slowly on the scale of theX2X8 dependence of
the correlation functions we can apply the normalizati
conditions Eqs.~7! and ~24! to get

d̄PPO~X!5F d̄PPO~X!

d̄CPO~X!
G 2

3 (
n8n8m8

E
0

`

dx8d̄CPO~X8!d̄CPO~X2X8!, ~45!

which is satisfied by

d̄PPO~X!}
1

x

e2m2a/2x

A2px/a

e2n2b/2x

A2px/b
, ~46!
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d̄CPO~X!}g
e2m2a/2x

A2px/a

e2n2b/2x

A2px/b
. ~47!

The dependence onn is assumed to be the same for bo
d̄PPO(X) and d̄CPO(X). The parametersa and b here are
lengths of the order of the billiard size. The mean density
PPOs Eq.~46! was introduced by Berry and Keating@30#.
The numeric tests of Dittrichet al. @31# support the distribu-
tion Eq. ~46!. Then the mean density Eq.~47! is the solution
of Eq. ~45!.

Assuming thatd̄PPO(X)/d̄CPO(X)5(gx)21 for largex, we
have the main result of this section:

R̃~x,y!5
1

x2g2E
0

`

dx8 d̃CPO~x8!C̃~x2x8,y!, ~48!

which was obtained by the summation on both sides of
~44! over n,n,m at n85n, n85n, andm85m.

It is instructive to check how Eqs.~38! and~40! work for
logarithms of integer and prime numbers. It turns out t
Eq. ~38! is precisely equivalent to the Hardy-Littlewood co
jecture. This can be shown by simple algebra and we put
calculation in Appendix B. At the same time Eq.~40! is
equivalent to the smoothed form of the Hardy-Littlewo
expression, see Appendix C.

V. BEHAVIOR OF THE FORM FACTOR
NEAR HEISENBERG TIME

For the case of billiards it is convenient to introduce t
Heisenberg length 2pd̄(k). From Eqs.~10b! and ~25c! one
can see that the diagonal parts of the form factors are in
pendent of the Heisenberg length, because they are inde
dent ofk. They are purely classical quantities.

The information about the behavior of the form facto
near the Heisenberg length is hidden in their off-diago
parts. The off-diagonal parts of the form factors are not
dependent; the Fourier transform of Eq.~48! with respect to
y gives us

Koff~x,k!5
1

4p2g2E
0

`

@Kdiag
z ~x8!Koff

z ~x2x8,k!

1Kdiag
z ~x8!Koff

z ~2x2x8,k!#dx8, ~49!

where we substituted the mean density of CPOs from
~25c! and also used Eqs.~10d! and~25e!. In the derivation of
Eq. ~49!, we have assumed that the Heisenberg length is
large that Eqs.~10d!, ~25c!, ~25e!, and ~48! are valid. We
also put Eq.~49! in the form that is symmetric with respec
to x. Equation~49! shows thatKoff(x,k) is an analytic func-
tion near the Heisenberg lengthx;2pd̄(k) in agreement
with results of Ref.@17#. A more detailed comparison o
results is possible if we expressKoff

z (x,k) in terms of
Kdiag

z (x).
The functional equation for the spectral zeta function E

~16! results in symmetry properties of the correlation fun
tion Eq.~19!. The Fourier transform of this equation gives

Kz~x,k!5Kz
„2pd̄~k!2x,k…. ~50!
f

q.

t

is

e-
en-

l
-

q.

so

.
-

The derivative with respect tox of both sides of Eq.~50! can
be written as

Kdiag
z8 ~x!1Koff

z8~x!52Kdiag
z8 ~2pd̄2x!2Koff

z8~2pd̄2x!,
~51!

where the argumentk is omitted atd̄ and atKoff
z8(x). Near the

Heisenberg lengthKdiag
z (x) is almost constant and its deriva

tive can be neglected. The same thing is true forKoff
z (x) for

small x. We, therefore, remain with

Koff
z8~x,k!52Kdiag

z8 „2pd̄~k!2x…. ~52!

This equation together with Eq.~49! expressesKoff(x,k) in
terms of Kdiag(x), Kdiag

z (x), and d̄(k). Equations~49! and
~52! solve the problem of the periodic orbit computation
K(x,k) nearx;2pd̄(k).

One can understand the important role of the short co
posite orbits by looking at another form of Eq.~49!, which
can be obtained from Eq.~42! by making use of Eqs.~27!,
~10d!, and~25e!:

Koff~x,k!5
1

4pg2(
c

e2lcl cKoff
z ~x2 l c ,k!, ~53!

valid for x.0. Substitution of the integrated Eq.~52! gives

Koff~2pd̄2x!5(
c

e2lcl c

4pg2
@Kdiag

z ~x1 l c!2g#. ~54!

The functionKoff(2pd̄2x) has spikes for the small value
of x equal to the length differences of the short CPOs.

The inverse Fourier transform of Eq.~49! would give us
the expression forRoff(«,k). However, it does not converge
becauseKoff

z (x,k) remains constant whenx goes to infinity.
The regularization of the inverse Fourier transforms obtain
by taking derivatives of Eq.~49! with respect tox and 2pd̄
gives

Roff~«,k!5
cos@2pd̄~k!«#

2p2g2 uCdiag~«!u21d̄~k!d~«!. ~55!

This equation, which reproduces the results of Ref.@17#, was
adopted for the ballistic systems in Ref.@23# and rederived in
Ref. @7#, see Sec. VI of the present work for a more detai
discussion.

It is also instructive to check all of our equations for th
case when the system exhibits universal behavior. The
dom matrix theory predicted the correlation functions of t
density of states@32# and the spectral determinant@26# to be

R~«,k!5
cos@2pd̄~k!«#21

2p2«2 1d̄~k!d~«!, ~56!

C~«,k!52geipd̄~k!«
sin@pd̄~k!«#

«
, ~57!
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where the latter satisfies the symmetry relation Eq.~19!. The
commonly accepted form of Eq.~56! can be obtained for
R(«,k)/@ d̄(k)#2 and it is sin2(z)/z2, wherez[p«d̄(k). The
universal form factors are

K~x,k!5
uxu12pd̄~k!2 zuxu22pd̄~k!z

8p2
, ~58!

Kz~x,k!5gu~x!u„2pd̄~k!2x…. ~59!

One can note the symmetry of the universal form factor
~58! with respect to the exchangex↔2pd̄(k).

In order to see some kind of the universal length spectr
correlations, let us use the inverse density of stateskx , which
is a purely classical function defined in Eq.~8!. The Fourier
transforms of Eqs.~58! and ~59! with respect tok and the
change of sign give

R̃~x,y!5 d̃PPO~x!
1

xE0

x

dx8
sin~kx8y!

py
, ~60!

C̃~x,y!5 d̃CPO~x!
sin~kxy!

py
. ~61!

Both correlation functions satisfy the normalization con
tions Eqs.~7! and ~24!. Equation ~61! is the ‘‘universal’’
correlation function of the composite actions. Equation~60!
is the essence of the relation Eq.~48! and it is the most
general ‘‘universal’’ correlation function of the actions.

VI. DISCUSSION AND SUMMARY

The principal results of the present work are the statist
relations Eq.~49! or Eq.~53! and the approximate functiona
equation Eq.~52!. The correlation functions and their form
factors depend parametrically on the widths of the averag
windowsDk andD l . At the same time these parameters
not appear in the statistical relations Eq.~49! and Eq.~54!.
Therefore, these relations are valid for some values ofDk
andD l , which should be specified.

The probabilistic derivation of Eq.~49! means that
Koff(x,k) and R(«,k) possess fluctuations. Therefore, o
has to chooseDk and D l in such a way that these fluctua
tions will be smaller than the correlation functions the
selves@33#.

Let us assume that the four-point correlation function
levels has the universal random matrix theory form tha
justified for some chaotic systems@34,35#. Then one can
show, by making use of the geometric representation Fig
that the mean square fluctuations ofR(«,k) are of the order
of d̄3/2Dk21/2.

Let us assume that the two-point correlation functi
given by Eq.~55! behaves like 1/«2 for «d̄(k)@1. Then it
becomes of the order ofD l 2 near «;1/D l , which is the
maximal value of« where the definition Eq.~2! is meaning-
ful. Therefore the condition that the fluctuations ofR(«,k)
are smaller thanR(«,k) itself is
.

m

-

l

g

-

f
s

2,

D l 2@
d̄3/2

Dk1/2
. ~62!

This inequality, together with Eqs.~13! and~14!, restricts the
choice ofDk andD l strongly.

The inequalities Eq.~14! taken near the Heisenberg leng
become the approximate equation relatingD l to Dk. We can
substituteD l (Dk) into Eq. ~62! and obtain

Dk5@
d̄3

d̄84
. ~63!

Let N(k) be a function counting energy levels withkn,k.
One can apply the approximationd̄8(k)'d̄2(k)/N(k),
which is valid for generic system. The counting function c
be substituted into Eq.~63!, and it gives the widths of the
averaging window measured in the number of energy lev

DN@N 4/5. ~64!

This inequality has to be satisfied together withDN!N.
Therefore the numeric check of relations like Eqs.~54! and
~55! is difficult. One has to take at leastN;1010 and average
over DN;109 levels in order to see nonuniversal featur
predicted by Eqs.~54! and ~55!. The two-point correlation
function has to be evaluated for« in the range from zero to
d̄/D l;N/DN;10 level spacings. This estimate also sho
that

DkD l;
DN 2

N @1 ~65!

and the definitions of the correlation functions Eqs.~2! and
~18! are justified.

The basic object characterizing a chaotic dynamical s
tem is the set of mixing rates. They show how fast t
density-density correlations decay. These rates are zero
the so-called classical zeta function; see, e.g., Ref.@36#,
which is approximatelyCdiag( is); see Ref.@7#. The func-
tional equation in the form Eq.~52! implies

«Coff~«,k!5e22p i d̄~k!«@«Cdiag~«!#* , ~66!

where«Cdiag/off is defined as the inverse Fourier transform
Kdiag/off

z8 . ThereforeCoff(«,k) is the classical zeta function
modulated by quantum oscillations. This function conta
the information not only on the mixing properties of th
billiard, but also on quantum recurrence.

The association ofCdiag( is) with the classical or Ruelle
zeta function is valid in the same approximation as Eq.~55!
was derived. Therefore, Eq.~55! reproduces exactly the re
sults of Ref.@23#, for the case of the system with broken tim
reversal symmetry. The result of Ref.@7# goes beyond the
range of lengths given by Eq.~11!. One has to make the
replacement in Eq.~55!,

uCdiag~«!u2→@2pd̄~k!g#2K z~k1«/2!z* ~k2«/2!

z* ~k1«/2!z~k2«/2!L
diag

~67!
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and use the product Eq.~17! truncated near the Heisenbe
length l p<2pd̄(k) in order to obtain the more accurate r
sults of Ref.@7#. We performed the more accurate compu
tion for the prime numbers, see Appendix B, and obtain
the precise form of the Hardy-Littlewood conjecture, whi
is equivalent to the replacement Eq.~67! in Eq. ~55!.

All calculations in this work were done for chaotic bi
liards, where the action of orbitp has the very simple form
Sp5\klp . The present theory can be generalized for ot
types of dynamical chaotic systems. The only problem is t
the correlation function of actionŝd(x2Sp)d(x82Sp8)&
has to be defined by averaging over the constant mean pe
]Sp /]E1]Sp8 /]E. The justification of such a procedur
was discussed in Refs.@8,9#.

The result of the present work cannot be applied to
systems that possess time reversal symmetry. In this cas
should computeC̃2(X;X8) or R̃2(X;X8) for mÞm8, i.e., the
action correlations of orbits with different winding number
However, the results presented here can be generalized
system having discrete symmetries@10#, see also a discus
sion of this problem by Leyvraz and Seligman@37# and
Agamet al. @38#. In the case of the discrete symmetry of t
system, one should compute the multiplicities of the perio
orbits and correlations of these multiplicities in order to o
tain the spectral statistics. Probabilistic number theory me
ods can be used again for this purpose as in the case o
modular group@39#.

We should emphasize that our derivation is correct onl
there are no two CPOs of the same length and the s
winding number; see Eqs.~27!, ~28!, ~29!, and ~41!. This
assumption is eventually equivalent to the assumption ab
the noncommensurabilityof the lengths of PPOs. Howeve
it is not clear what would happen if there are PPOs w
commensurable lengths. In the case of the modular gr
@39# the degeneracy of the length spectrum is so strong
one would obtainK(t) very different from the result pre
dicted here.

In summary we have shown that the functional equat
for the spectral determinant implies the action correlatio
Our derivation is valid only if the lengths of PPOs are no
commensurable. Quantum-classical time scale separatio
systems with broken time reversal symmetry allows us
compute all spectral and action correlation functions bey
their universal random-matrix theory shapes. One of the c
tral technical points in the present work is the derivation
the Hardy-Littlewood conjecture of prime-number corre
tions in such a way that it can be used for actions o
dynamical system.
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APPENDIX A: NORMALIZATION
OF THE CORRELATION FUNCTIONS

The normalization conditions Eqs.~7! and ~24! are ge-
neric for the correlation function and we expect th
-
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(c8@P(c)P(c8)2P(c,c8)#5P(c) and (c8@P(c9Pc)P(c9
Pc8)2P(c9Pcùc9Pc8)#5P(c9Pc). The sum overc8 in
Eq. ~38! leads to

P~c!'(
c9

P~c9Pc! )
p¹c9,l p, l c*

@122P~pPc!#. ~A1!

We can representP(c9Pc) as a product, and then

P~c!' )
l p, l c*

@122P~pPc!#(
c9

)
pPc9,l p, l c*

P~pPc!

122P~pPc!

' )
l p, l c*

@122P~pPc!#F11
P~pPc!

122P~pPc!G
5 )

l p, l c*
@12P~pPc!#

in agreement with Eq.~31!.

APPENDIX B: CORRELATIONS OF PRIMES OBTAINED
FROM CORRELATIONS OF INTEGERS

We can demonstrate the relation between the correla
functions of composite and primitive actions using the e
ample of integer and prime numbers. Let us consider
prime numberp as a PPO of length log(p) and the integer
number n as a CPO of length log(n). This ‘‘CPO’’ may
contain repetitions of ‘‘PPO,’’ but this is not important fo
large numbers.

Saying that the ‘‘CPO’’m ‘‘is a part of’’ ‘‘CPO’’ n
means thatm is a divisor ofn, and we will writemun. This
notation allows us to rewrite Eq.~38! as

P(n)P(n8)2P(n,n8)5(
m

$[ P~mun!P~mun8!

2P~munùmun8!]

3)
pu”m

@12P~pun!2P~pun8!#%,

~B1!

where m runs over integers that do not contain powers
primes. HereP(n) is the probability to find a prime number
and P(n,n8) is the probability to find pair of primes, se
Refs.@40,41# for precise definitions.

The derivation of the Hardy-Littlewood expression
based on the probability@40# that m is a divisor ofn

P~mun!5
1

m
. ~B2!

Our derivation is based on the probability of finding a co
mon divisor

P~munùmun8!5
1

m(
lÞ0

dn2n82ml , ~B3!
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where the Kroneckerd symbol in the right hand side is equ
to one forn5n82ml and equal to zero otherwise. It carrie
information about correlations of integers, because if
found with probability 1/m that n is multiple of m, then all
integersn85n1ml are also multiples ofm with the prob-
ability 1.

Substituting the probability Eq.~B3! into Eq. ~B1! we
obtain

P~n!P~n8!2P~n,n8!

5(
m

H F 1

m2 2
1

m(
lÞ0

dn,n82mlG)
pu”m

F12
2

pG J , ~B4!

and the right hand side of this equation is zero ifm is odd.
Indeed, if m is odd thenp52 is not a divisor ofm and
122/p gives zero. The density of prime number
P(n)5)p(121/p), must follow the prime number theorem
and this is the criterion for choice of the upper limit in th
products over primes.

The next step, which is not necessary, is to separate
smooth part from the part containing correlations

P~n,n8!5 (
mu~n2n8!

1

m)
pu”m

F12
2

pG , ~B5!

and this expression is nonzero only ifn2n8 is even. Only
terms with evenm contribute and the term withm52 is
always present. We can, therefore, extract the factor 2 f
all terms, and we obtain for evenn2n8

P~n,n8!5
1

2 )
p>3

F12
2

pG1 (
mu~n2n8!

1

2m )
pu”m,p>3

F12
2

pG ,
~B6!

wherem is odd and does not contain powers of primes. W
can rewrite the sum as a product:

P~n,n8!5
1

2 )
p>3

F12
2

pG )
pu~n2n8!,p>3

p21

p22
. ~B7!

This product contains the correct enhancement@42# of the
probability to find a pair of primesn,n8 by the factor
(p21)/(p22) per each prime, which is divisor ofn2n8.

A similar computation shows that

(
m

1

m2 )
pu”m

S 12
2

pD5)
p

S 12
1

pD 2

5P~n!P~n8!.

~B8!

Therefore we have shown that Eq.~B5! follows Eq. ~B4!.
e

he

m

e

The product Eq.~B7! diverges to zero for largen. For this
reason the probability P(n,n8) is divided by
P(n)5)p(121/p); see Ref.@43#, chapter entitled Postscrip
on prime-pairs.

P~n,n8!

P~n!P~n8!
52)

p>3

122/p

~121/p!2 )
pu~n2n8!

F11
1/p

122/pG .
~B9!

This correlation function contains only the convergent pro
ucts and it allows one to compute statistics of the zeros of
Riemann zeta function with great accuracy@7#.

APPENDIX C: SMOOTHED CORRELATION FUNCTION
OF PRIMES

The smoothed form of the correlation function of prim
numbers is valid forun2n8u@1, and it can be obtained di
rectly from Eq.~40!

12
P~n,n8!

P~n!P~n8!
'(

m
F 1

m2 2P~munùmun8!G . ~C1!

In this equation we used the probabilities of finding t
prime numberP(n) and the probability of finding the pair o
prime numbersP(n,n8), see Refs.@40,41#, and we substi-
tuted 1/m2 instead ofP(mun)P(mun8).

The smoothing of the probability to have a common di
sor can be done in a number of different ways. We sugg
that the simplest one is

1

mE
2m/2

m/2

P~munùmun8!dn85
1

m2 uS un2n8u2
m

2 D .

~C2!

The summation overm in Eq. ~C1! can be replaced by the
integration and we obtain

P~n,n8!

P~n!P~n8!
'12E`

dm
12u~ un2n8u2m/2!

m2

'12
1

2un2n8u
. ~C3!

The choice of the lower limit in the integral is not importan
because the integration is performed from 2un2n8u. This
result is the leading order expansion of the correlation fu
tion in un2n8u21 and it coincides with Keating’s result@40#.

The probability of finding a prime number can be com
puted from Eq.~C3! by application of the normalization con
dition Eq. ~7!

1

P~n!
5(

n8
H 12

P~n,n8!

P~n!P~n8!J ' (
un2n8u,n

1

2un2n8u
' log~n!

~C4!

according to the prime number theorem@44,43#.
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